Landslide Generated Tsunami

Dr. Hermann M. Fritz
Georgia Institute of Technology, Savannah
What does a fresh landslide scar look like?

Guaitara, Colombia 2003
Lake Uri, Switzerland

Blasting triggered 20,000 m³ of Limestone, 1992
Experimental set-up

- pneumatic landslide generator ◊ controlled initial conditions
- 2 laser distance sensors LDS ◊ slide profiles $\xi(t)$
- 7 capacitance wave gauges CWG ◊ wave profiles $\eta(t)$
- digital particle image velocimetry PIV ◊ velocity vector fields v_p
Slide-Granulate (PP-BaSO$_4$)

- $d_g = 4$ mm
- $\rho_g = 2.64$ t/m3
- $n = 39$ %
- $\rho_s = 1.62$ t/m3
- $\phi' = 43^\circ$
- $\delta = 24^\circ$

Slide profiles
Impact Experiment

\[F = 3.1, \quad m_s = 108 \text{ kg}, \quad h = 450 \text{ mm} \]
raw PIV-sequence

Total area of view (AOV) = 1.6 m 0.8 m
2 adjacent AOV’s from repeated runs mounted

F = 1.9, m_s = 108 kg, h = 450 mm
Outward collapsing crater: v_{px}, v_{pz}

$F = 3.2, \ V = 0.79, \ S = 0.31, \ h = 0.3 \text{ m}$
Comparison with wave theory

Observed wave profiles

Recommended ranges after Le Méhauté (1976)
Wave celerity

1. trough

\[c_1 = \sqrt{gh} \left(1 + \frac{a}{2h}\right) \]

\[\approx \sqrt{g(h + a)} \]

2. wave crest

\[c_2 = \sqrt{gh} \left(1 + \frac{a}{2h}\right) \]

\[\approx \sqrt{g(h + a)} \]
Lituya Bay, devastation 1958

Country: BBC, Horizon “Megatsunami”
530m Tsunami Wave Run-up
3D-Subaerial / Submarine Landslide Tsunami Generator

NSF NEES Sponsored II-Project
Initial Mechanisms of Tsunamigenic Landslides

Shear Band Propagation

Puzrin and Germanovich, GT (2004)
3D Landslide Tsunami Experiments at OSU-NEES facility

NSF NEES Sponsored II-Project
Questions ?